# Observation of B $\rightarrow \mu \nu$ D\*\* X

#### Andrei Nomerotski, Fermilab

APS Denver 2004

- D\*\* are orbitally excited D ~
   meson states, see diagram
- In heavy quark limit expect  ${}^{\Brightarrow}_{2.6}$  two sets of doublet states
  - Two broad (decay through 5wave)
  - Two narrow (decay through Dwave)
- Narrow D\*\*
  - +  $D_1^0(2420)$  ->  $D^{*+} \pi^-$
  - D\*0<sub>2</sub>(2460) -> D\*+ π<sup>-</sup>
    - ▲ One of decay channels



Figure from Belle, hep-ex/0307021



### D<sup>0</sup> sample

- $D_1^0$ ,  $D_2^{*0}$  have been observed and studied in several experiments, most recently by BaBar and Belle in  $B^- \to D^{**0}$   $\pi^-$
- We study D<sub>1</sub><sup>0</sup>, D<sub>2</sub>\*<sup>0</sup> produced in semileptonic B decays
- Started with B -> μ D<sup>0</sup> X sample

DØ Runll Preliminary, Luminosity=250 pb<sup>-1</sup>





# D\* sample

#### Selections

- Additional pion pt>0.18 GeV
- Right charge correlation with muon







### D\*\* selections

- D\*\* selections
  - Additional pion
    - A pt > 0.3 GeV, # SMT hits > 1
    - ▲ Right charge correlation
    - ▲ IP significance wrt PV / IP significance wrt D\*\* vtx > 4
- B selections
  - \* # CFT hits > 5 for all tracks
  - B vertex  $\chi^2$  < 25
    - ▲ Made of all D\*\* tracks and muon
  - Lifetime cuts
    - ▲ Lxy significance > 3



## D\*\* Signal

- Look at invariant mass of D\*-  $\pi$ + system
- Observed merged  $D_1^0(2420)$  and  $D_2^{*0}(2460)$





### Interference effects

 Two interfering Breit-Wigner D\*\* states with mass/width as measured by Belle (no resolution effects included)



· Work in progress: extract separate amplitude for each state and relative phase of interference



#### Measurement of Br

- Experimentally determine total # of events in two narrow peaks
  - $N(D_1)+N(D_2) = 523 \pm 40$
- Measure Br of B  $\rightarrow \mu \nu$  narrow D\*\* X
  - Normalize to known Br (B  $\rightarrow$  D\*+  $\mu \nu$  X)

Br(B 
$$\rightarrow$$
 {D<sub>1</sub><sup>0</sup>, D<sub>2</sub>\*0}  $\mu$   $\nu$  X)  $\cdot$  Br({D<sub>1</sub><sup>0</sup>, D<sub>2</sub>\*0}  $\rightarrow$  D\*+  $\pi$ -) = 0.280  $\pm$  0.021 (stat)  $\pm$  0.088 (syst) %

• Can be compared to LEP measurement of total D\*\* Br

$$Br(B \to D^{*+}\pi^-\mu\nu X) = (0.48 \pm 0.10)\%$$

~ half of the rate goes through narrow states



### Systematic errors

Considered the following systematic effects

| Source                                                  | Br absolute error    |
|---------------------------------------------------------|----------------------|
| $D^*$ branching rates                                   | 0.020%               |
| MC statistics                                           | $\overline{0.023\%}$ |
| Normalization to $D^*/D^0$                              | 0.023%               |
| $\mathrm{P}_t^{\pi^{**}}$ dependence                    | 0.052%               |
| Possible contribution from wide resonance               | 0.039%               |
| Possible interference effects of $D_1^0$ and $D_2^{*0}$ | 0.040%               |
| Different modelling of D*fit                            | 0.010%               |
| Trigger bias                                            | 0.020%               |
|                                                         |                      |
| Total systematic error                                  | (0.088%)             |

• Can hope to decrease the main contributors in the future



### What else can be measured?

Theoretically semileptonic modes are favored because of simplicity

$$R\equiv rac{\mathcal{B}(B o D_2^*\ellar
u)}{\mathcal{B}(B o D_1\ellar
u)}$$
 = 0.4-0.7 predicted by HQET

- world average 0.4 +/- 0.15
- We can measure
  - + R from
    - $\blacktriangle$  N(D\*<sub>2</sub>) / N(D<sub>1</sub>)
  - Br ( B -> μ D<sub>1</sub>X)
  - Br ( B -> μ D\*<sub>2</sub>X)
- Signal has good purity can study
  - Interference effects
  - Helicity



#### **Conclusions**

- Observed B  $\rightarrow \mu \nu D^{**}$  decays
- Measured Br (B  $\rightarrow \mu \nu$  narrow D\*\* X)

Br(B 
$$\rightarrow$$
 {D<sub>1</sub><sup>0</sup>, D<sub>2</sub>\*0}  $\mu$   $\nu$  X)  $\cdot$  Br({D<sub>1</sub><sup>0</sup>, D<sub>2</sub>\*0}  $\rightarrow$  D\*+  $\pi$ -) = 0.280  $\pm$  0.021 (stat)  $\pm$  0.088 (syst) %

- Signal purity and statistics is good
  - Can do competitive measurements of Br and ratio of Br for two narrow D\*\* states
- Plans: increase statistics
  - Looser selections for D<sup>o</sup>
  - Add more decay modes for D<sup>0</sup>
  - More luminosity